Journal of Organometallic Chemistry 177 (1979) 145–152 © Elsevier Sequoia S A, Lausanne – Printed in The Netherlands

A REGIO- AND STEREOSELECTIVE SYNTHESIS OF 1,2-DISUBSTITUTED VINYLSILANES *

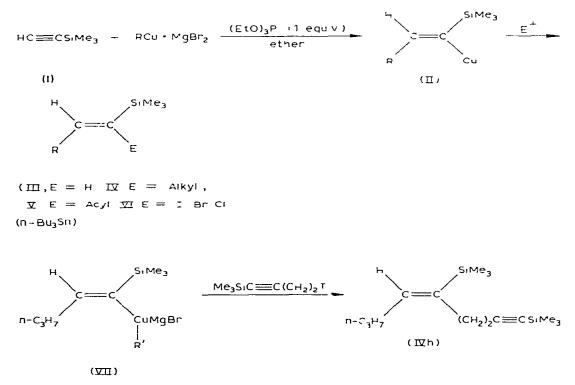
MICHIO OBAYASHI, KIITIRO UTIMOTO * and HITOSI NOZAKI Department of Industrial Chemistry Kyoto University Yoshida Kyoto 606 (Japan) (Received January 29th, 1979)

Summary

The alkylcopper reagents prepared from RMgBr and CuBr react with trimethylsilylacetylene to give regio- and stereo-selectivity 1-trimethylsilyl-1(Z)alkenylcopper adducts Hydrolysis affords 1-trimethylsilyl-1(E)-alkenes exclusively Alkylation, acylation, halogenation, and stannylation proceed stereoselectively to afford synthetically useful intermediates Homopropargylation of alkyl 1-trimethylsilyl-1(Z)-alkenylcuprates provided better yield than that of the original vinylcopper reagents

Carbometallation of alkynes with alkylcopper reagents followed by carbodemetallation has provided a novel strategy of stereoselective synthesis of olefins [1] and some acetylenes with hetero substituents on *sp* carbon, RC=CX where X = SR, SOR, SO₂R, PR₂, POR₂ and PSR₂, can enter the sequence of reactions [2] We studied the application of the procedure to trimethylsilylacetylene and discovered a useful synthesis of vinylsilanes, which have attracted considerable attention as versatile intermediates in organic synthesis [3,4] This paper ** describes the addition of alkylcopper to trimethylsilylacetylene to give 1-trimethylsilyl-1(Z)-alkenylcopper compounds (II) ***, which are transformed into the trimethylsilylated olefins (III, IV, V and VI) The advantages of the corresponding alkyl cuprates (VII) for homopropargylation are demonstrated

The reaction of Me₃S₁C≡CH (I) with n-C₆H₁₃Cu · MgBr₂ occurred regio- and stereoselectively in ether at 0°C to give 1-trimethylsilyl-1(*E*)-octene (III) after hydrolytic work up \dagger . (The α -silylated vinylcopper II must have been formed as an intermediate, but it was not isolated.) The yield of III depends on the


** A preliminary report dealing with certain aspects of this work has appeared [5]

*** The reaction has been independently reported [6]

^{*} Dedicated to Professor H Normant on the occasion of his 72 id Birthday on June 25th 1979

[†] Vinylsilane III was identical with an authentic sample prepared by the chloroplatinic acidcatalyzed reaction of trichlorosilane and 1-octyne followed by treatment with MeMgI [7]

amount of $(EtO)_3P$ added as a ligand, as shown in Table 1. These data indicate that 1 equiv of $(EtO)_3P$ increases the solubility of the alkylcopper to facilitate the addition, and at the same time moderately stabilizes the alkylcopper by preventing its dimension [8]

In contrast to I, terminally silvated alkynes in general, 1-trimethylsilvl-1alkynes, did not react with alkylcopper reagents under the same conditions $\tilde{}$, probably because of steric hindrance by the C(2)-alkyl group

The α -silylated vinylcopper products (II) thus prepared are easily converted into 1,2-disubstituted vinyisilanes (IV, V, and VI) with >99% stereoselectivity. Alkylation of II with several kinds of alkyl halides in the presence of (EtO)₃P and HMPT [10] produced (*E*)-1,2-dialkylvinylsilanes, which are important inter mediates for stereoselective synthesis of di- and tri-substituted ethylenes [11,12] and of vinyl halides [13] In particular homopropargylation of 1-trimethylsilyl-1(*Z*)-pentenylcopper (II) proceeds in a moderate yield to give 1,5bis(trimethylsilyl)-5(*E*)-nonen-1-yie (IVh, R = n-C₃H₇, E = (CH₂)₂C=CSiMe₃), which can easily be transformed into the tetrahomonerol obtained from the codling moth [12c]. This is in contrast with the reaction with vinyllithium or magnesium compounds, in which elimination of HI from homopropargyl iodide predominates. The present procedure is therefore of practical importance **.

^{*} Recently some examples of carbometallation of 1-trimethylsilyl-1-alkynes have been described [9]

^{**} The reaction of 1-alkenvlcopper with homopropargyl chloride gives no coupling p oduct [10]

Γ\BLF 1

R	Flectrophile	Product	Yield (c) ^{<i>a</i>}	
n-C ₆ H ₁₃	H ₂ O	III	76	
	··· _ ·		$27(0)^{b}c$	
			62 (2) ^b	
			26 (3) ^b	
n-C3H7	n-C ₅ H ₁₁ I	IV a	64	
n-C3H7	n-C ₆ H ₁₃ I	IVb	69	
$n-C_5H_{11}$	n C3H7I	IV с	71	
n-C ₆ H ₁₃	CH3I	IV d	73	
n-C ₆ H ₁₃	n-C3H7I	IV e	58	
n-C6II13	n-C6H13I	IX f	72	
n-CoH13	CH2=CHCH2Br	IV g	57	
n-C3H7	Me3SiC=C(CH2)2I	IVh	52	
			76 (R = CH_3) ^d	
			66 (R = $C_2 H_5$) ^d	
			72 (R = $n-C_3H_7$) ^d	
			$62 (R = n - C_3 H_7)^c$	
C ₂ H ₅	n-C3H7COCl	Va	63	
n C3H7	n-C ₃ H ₇ COCl	Vb	76	
n-C6H13	n-C ₃ H ₇ COCl	Vc	80	
C ₂ H ₅	I2	VIa	67	
n-C3H7	I2	VIb	71	
n-C6H13	12	VIc	79	
n-C ₆ H ₁₃	NBS	VId	66	
n-C ₆ H ₁₃	NCS	VIe	66	
C ₂ H ₅	(n-Bu) ₃ SnCi	VIf	51	
n-C ₃ H ₇	(n-Bu) ₃ SnCl	VIg	56	

CONVERSION OF 1-TRIMFTHY LSH Y I -1(Z)- NI KENY LCOPPFRS (II) INTO 1 2-DISUBSTITUTED VINY LSILANES (III IV AND VI)

^a Yields are based on RMgBr ^b The number in parentheses is the amount (equiv.) of (EtO)₃P added ^c Dodecane was obtained in 33% yield ^d VII prepared by adding 1 equiv. of R MgBr was used (route A) ^e VII obtained by the reaction of HC=CSiMe₃ with (n-C₃H₇)₂CuMgBr was used (route B)

The yield of IVh is improved by the use of vinylcuprates (VII) instead of the original vinylcopper derivatives (II) $\stackrel{\times}{}$ The cuprates VII can easily be obtained either by adding 1 equiv of R'MgBr to II (route A) or by reaction of trimethylsilylacetylene (I) with $(n-C_3H_7)_2$ CuMgBr (route B). In route B, the yield of VII was rather low, which reflects lower yield of IVh in route B $\stackrel{\sim}{}$ as compared with that in route A

Further reactions of II with other electrophiles have been examined Acylation with butyryl chloride provided α -silylated enones (V), which are useful precurors of allenes [15] as well as Michael acceptors [16] Halogenation [6,17] and stannylation [18] of vinylcoppers II afforded α -halo- and α -stannylvinylsilanes (VI), respectively, which are exceedingly versatile synthetic intermediates in a variety of chemical transformations via α -silylated vinyllithium [19] ***

^{*} Recently it has been reported that ethyl 1-alkenylcuprate is alkylated by homopropargyl iodide in high yield [14]

^{**} The reaction of I with $(n-C_6H_{13})_2$ CuMgBr in ether at 0°C for 2 h afforded 1-tnmethylsilyl-1(*E*)octene (III) in 69% yield after hydrolytic work up

^{***} Carbodematallation of 1-trimethylsilyl-1(Z)-octenylcopper (II) with 3-buten-2-one afforded 5-trimethylsilyl-5(E)-dodecen-2-one in 14% yield In further attempts to prepare 1,2-disubstituted vinylsilanes treatment of 1-trimethylsilyl-1(Z)-octenylcopper (II) with Me₃SiCl or ClCOOEt gave none of the desired products

Gas chromatography was performed on a Shimadzu GC-4BPT chromatograph with 3 mm × 3 m glass columns packed with 20% polyethylenegly col 20M and and 20% HVSG on Chromosorb W-AW (80-100 mesh) Mass spectra were obtained on Hitachi RMU-6L mass spectrometer at 70 eV NMR were recorded on Varian EM-360, JEOL JNM-PMX 60, and Varian EM-390 spectrometers with Me₄Si as internal standard IR spectra were recorded on a Shimadzu IR-27G spectrometer. Elemental microanalyses were performed at the Elemental Analyses Center of Kyoto University All reactions were carried out under dry argon. Trimethylsilylacetylene (I) was prepared by published methods [20]

(E)-1,2-Dialky luiny Isilares (IV)

5-Trimethylsilyl-4(E)decene (VIa, $R = n - C_3 H_7$, $E = n - C_5 H_{11}$) To a suspension of propylcopper prepared from n-C₃H₇MgBr (1 mmol, 0 91 ml of 1 10 *M* ethereal solution) and CuBr (0 16 g, 1.1 mmol) at -20°C for 15 mm, was added Me₃SiC=CH (I, 0 18 ml, 1.4 mmol) and (EtO)₃P (0 23 ml, 1 1 mmol) The mixture was gradually warmed to 0°C and stirring was continued for 2 h. After addition of (EtO)₃P (0 46 ml, 2 2 mmol), HMPT (1 ml), and n-C₅H₁₁I (0 20 ml, 1.5 mmol) at -40 to -45°C the mixture was kept at that temperature for 1 h then overnight at room temperature. After addition of aq. NH₄Cl the ethereal solution was washed (aq. NH₄Cl, sat. NaCl) and dried (MgSO₄). Chromatographic separation of the concentrate on silica-gel column (hexane) afforded 0.14 g (64%) of IVa (E > 99%). B,p. 118–122° C/20 mmHg, IR (neat) 1612, 1247, 837, 754, 691 cm⁻¹; mass spectrum m/e (rel %) 212 (M^+ , 0.3), 197 (11), 73 (100); NMR (CCl₄) δ (ppm), 0.00 (9 H, s), 0.67–1.08 (6 H, m), 1.08–1.70 (8 H, m), 1.70–2.30 (4 H, m), 5.65 (1 H, br-t, J.7 Hz). Anal. Found. C, 73.41. H, 13.53. C₁₃H₂₈S1 calcd · C, 73.50; H, 13.28%.

5-Tum thylsilyl-4(E)-undecene (IVb, $R = n - C_3 H_7$, $E = n - C_6 H_{13}$) Yield, 69%, E > 99%; i.p. 118–122°C/14 mmEg IR (neat) 1611, 1240, 850, 833, 752, 689 cm⁻¹: mass spectrum: m/e (rel. %) 226 (M^+ , 0 4), 211 (10), 73 (100). NMR (CCl₄) δ (ppm), 0.00 (9 H, s), 0.67–1.08 (6 H, m), 1 08–1 67 (10 H, m), 1.67–2.33 (4 H, m), 5.63 (1 H, br-t, J 7 Hz) Anal. Found C, 74 08, H, 13.63. $C_{14}H_{30}$ Si calcd.: C, 74.25, H, 13 35%.

4-Trimethylsilyl-4(E)-decene (IVc, $R = n - C_5 H_{11}$, $E = n - C_3 H_7$) Yield, 71%, E > 99%; b p. 100°C/10 mmHg, lR (neat) 1612, 1243, 832, 751, 689 cm⁻¹, mass spectrum. *m/e* (rel. %) 212 (*M*⁺, 1), 196 (16), 73 (100), NMR (CCl₄) δ (ppm), 0.00 (9 H, s), 0.67–1 05 (6 H, m), 1.05–1.70 (8 H, m), 1.70–2.30 (4 H, m), 5.63 (1 H, br-t, *J* 7 Hz). Anal. Found C, 73 29, H, 13 43. $C_{13}H_{28}S_{11}$ calcd \cdot C, 73.50; H, 13 28%

2-Trimethylsilyl-2(E)-nonene (IVd, $R = n-C_6H_{13}$, $E = n-C_3H_7$) Yield, 73%, E > 99% [4b]

4-Trimethylsilyl-4(E)-undecene (IVe, $R = n - C_6 H_{13}$, $E = n - C_3 H_7$) Yield, 58%, E > 99%, b.p. 118—122°C/14 mmHg, IR (neat) 1612, 1240, 833, 751, 690 cm⁻¹; mass spectrum: m/e (rel. %) 226 (M^+ , 0 6), 211 (16), 73 (100), NMR (CCl₄) δ (ppm), 0.03 (9 H, s), C 87 (6 H, t, J 6 Hz), 1 10—1.45 (10 H, m), 1.87—2.20 (4 H, m), 5.59 (1 H, t, J 7 Hz). Anal Found: C, 74 53, H, 13 48 $C_{14}H_{30}Si$ calcd. C, 74.25, H, 13.35%. 7-Trimethylsilvl-7(E)-tetradccene (IVf, $R = E = n \cdot C_6 H_{13}$) Yield, 72%, E > 99% This material was identical with an authentic sample prepared by the chloroplatinic acid-catalyzed reaction of trichlorosilane and 7-tetradecyne and subsequent treatment with MeMgI [7]

4-Trimethylsilyl-1,4(*E*)-undecadiene (*IVg*, $R = n - C_6H_{13}$, $E = CH_2CH=CH_2$) Yield, 57%, E > 99% b p 95°C/15 mmHg IR (neat) 3070, 1635, 1612, 1241, 992, 910, 835, 752, 691 cm⁻¹, mass spectrum *m/e* (rel %) 224 (*M*⁺, 1), 209 (1), 73 (100), NMR (CCl₄) δ (ppm), 0 00 (9 H, s), 0 70–1 07 (3 H, m), 1 07–1 67 (8 H, m), 1 67–2 33 (2 H, m), 2 73–2 97 (2 H, br-t, J = 6 Hz), 4 67–5 93 (4 H, m) Anal Found C, 75 02 H, 12 72 $C_{14}H_{28}$ Si calcd C, 74 91, H, 12.57%

1,5-Bis(trimethylsilyl)-5(E)-nonen-1-yne (IVh, $R = n - C_3 H_7$ E = $(CH_2)_2 C \equiv CSiMe_3$) Yield, 52%, E > 99% b p 115—120°C/6 mmHg, IR (neat) 2200, 1612, 1241, 1025, 840, 7€°, 691 cm⁻¹, mass spectrum *m/e* rel %) 266 (*M*⁺, 1), 251 (3), 73 (100), NMR (CCl₄) δ (ppm), 0 03 (9 H, s), 0 0⁻ (9 H, s), 0.67—1 10 (3 H, m), 1 10—2 50 (8 H, m), 5 69 (1 H, br-t, *J* 7 Hz) Anal Found C, 67 69, H, 11 33 C₁₅H₃₀Sl₂ calcd C, 67 59, H, 11 34%

Homopropargylation of alkyl 1-trimethylsilyl-1(Z)-pentenylcuprates (VII) to IVh

Route A A solution of 1(Z)-pentenylcopper (II) was prepared from n-PrMgBr (1 mmol, 0 75 ml of a 1 34 M ethereal solution), CuBr (0 16 g, 1 1 mmol), and Me₃SiC=CH (0 18 ml, 1 4 mmol) in the presence of (EtO)₃P (0 23 ml, 1 1 mmol) by the procedure described above and treated with MeMgBr (1 mmol, 1 1 ml of 0 9 M ethereal solution) at -40 to -45°C for 0 5 h THF (2 ml), HMPT (1 ml), (EtO)₃F (0.46 ml, 2 2 mmol), and Me₃SiC=C(CH₂)₂I (0 39 ml, 2 0 mmol) were then added and the mixture was stirred at -40 to -45°C for 1 h and then overlight at room temperature Addition of aq NH₄Cl, was followed by separation, washing (eq NH₄Cl, sat NaCl), and drying (MgSO₄) on the ethereal layer. Chromatography of the concentrate on a silica-gel column (hexane) afforded 0.20 g (76%) of IVh (E > 99%) The use of EtMgBr (1 mmol, 1 2 ml of 0.85 M ethereal solution) or n-PrMgBr (1 mmol, 0 75 ml of 1 34 M ethereal solution) instead of MeMgBr afforded 0 18 g (66%) and 0 19 g (72%) of IVh, respectively

Route B To a suspension of n-Pr₂CuMgBr, prepared from n-PrMgBr (2 mmol, 1.5 ml of 1 34 M ethereal solution) and CuBr (0 16 g, 1 1 mmol) at -40° C for 0 5 h, was added Me₃SiC=CH (0 18 ml, 1 4 mmol) and (EtO)₃P (0 23 ml, 1 1 mmol). The mixture was gradually warmed to 0°C and stirring was continued for 2 h. Work-up as described above gave 0.16 g (62%) of IVh (E > 99%).

5-Trimethylsilyl-5(E)-alken-4-ones (V)

5-Trimethylsilyl-5(E)-octen-4-one (Va, $R = C_2H_5$, $E = n-C_3H_7CO$) A suspension of 1-trimethylsilyl-1(Z)-butenylcopper (II, 1 mmol scale) prepared as described above was treated with THF (2 ml), HMPT (1 ml), and butyryl chloride (0.11 ml, 1 mmol) at -45 to -50°C. The mixture was stirred overnight at a room-temperature, and worked-up by addition of saturated NaHCO₃, followed by separation, washing (sat NaHCO₃, sat. NaCl), and drying (MgSO₄) of the ethereal layer. Chromatography of the concentrate on a silica-gel column

150

(benzene) gave 0 13 g (63%) of Va (E > 99%) B p 91–96°C/26 mmHg. IR (reat) 1686, 1605, 1250, 1160, 1062, 935, 839, 754, 691 cm⁻¹ mass spectrum *m/e* (rel %) 198 (M^+ , 2). 183 (10), 155 (64). NMR (CCl₄) δ (ppm), 0 13 (9 H s), 0 80–1 13 (6 H, m), 1 60 (2 H, sext, *J* 7 Hz), 2 07 (2 H, quint *J* 7 Hz) 2 35 (2 H, t, *J* 7 Hz) 5 73 (1 H, t, *J* 7 Hz) Anal Found C, 66 90 H, 11 36 C₁₁H₂₂OS1 calcd C, 66 60 H, 11 187

5-Trumethylsdyl-5(E)-nonen-4-one (Vb, $R = n-C_3H_{7}$, $E = n-C_3H_{7}CO$) Yield, 76%, E > 99%, bp 80–85°C/4 mmHg IR (neat) 1680, 1602 1240, 1150, 1059, 937, 840, 755, 695 cm⁻¹, mass spectrum *m/e* (rel %) 212 (M^{+} , 2), 197 (8), 73 (100); NMR (CCl₄) δ (ppm), 0 11 (9 H s), 0 92 (6 H, t, J 7 Hz), 1 20– 1.75 (4 H, m), 2 02 (2 H, q, J 7 Hz), 2 33 (2 H, t, J 7 Hz), 5 73 (1 H, t, J = 7 Hz) Anal. Found C, 68 02, H, 11 60 $C_{12}H_{24}OSi$ calcd C, 67 85 H, 11 39%

5-Trumethylsily l-5(E)-dodecen-4-one (Vc. $R = n-C_0H_{13}$ E = $n-C_3H$ -CO) Yield, 80% E > 99%, b p 100–105°C/6 mmHg, IR (neat) 1685, 1603, 1250, 1150, 1067, 930, 838, 754, 691 cm⁻¹, mass spectrum *m/e* (rel c_0) 254 (M^+ , 4) 239 (8), 73 (100), NMR (CCl₄) δ (ppm), 0 12 (9 H), 0 80–1 10 (6 H, m), 1 10–1 85 (10 H, m), 1 18–2 23 (2 H, m), 2 35 (2 H, t, J 7 Hz), 5 75 (1 H, t, J 7 Hz) Anal. Found. C, 70 81. H, 11 73 C₁₅H₃₀OSi calcd C, 70 79. H. 11.88%.

a-Halogenated vinylsilanes (VIa-VIe)

1-Iodo-1-trumethylsilyl-1(Z)-butene (VIa, $R = C_2H_5$, E = I) A suspension of 1-trimethylsilyl-1(Z)-butenylcopper (II, 1 mmol scale), prepared as described above, was treated with THF (2 ml), HMPT (1 ml), and 0.30 g of I₂ (1 2 mmol in 5 ml of THF) at -45 to -50°C The mixture was stirred overnight at a room-temperature, then worked up by addition of sat NaHCO₃, followed by washing (sat. NaHCO₃, sat. NaCl), and drying (MgSO₄) of the ethereal layer Chromatography of the concentrate on a silica-gel column (hexane) afforded 0.17 g (67%) of VIa (Z > 99%). B.p 82-88°C/32 mmHg IR (neat) 1601, 1250, 883, 837, 750, 695 cm⁻¹; mass spectrum m/e (rel %) 254 (M^+ , 16), 73 (100) NMR (CCl₄) δ (ppm), 0.18 (9 H, s), 1.07 (3 H, t, J 7 Hz), 2 25 (2 H, quint, J 7 Hz), 6.14 (1 H, t, J 7 Hz). Anal Found. 33 34, H, 6 04 C₈H₁₇ISi calcd. C, 33.08; H, 5.95%

1-Iodo-1-trimethylsilyl-1(Z)-pentene (VIb, $R = n - C_3 H_7$, E = I) Yield, 71%, Z > 99%; b p 90–95°C/23 mmHg; IR (neat) 1605, 1250, 912, 860, 840, 751 cm⁻¹; mass spectrum *m/e* (rel. %) 268 (*M*⁺, 8), 185 (38), 73 (100), NMR (CCl₄) δ (ppm), 0 16 (9 H, s), 0 93 (3 H, t, *J* 6 Hz), 1 15–1 65 (2 H, m), 2.17 (2 H, q, *J* 6 Hz), 6 10 (1 H, t, *J* 6 Hz) Anal. Found⁻ C, 35.93, H, 6.49. C₈H₁₇ISi calcd ⁻ C, 35 82; H, 6 39%.

1-Iodo-1-trimethylsilyl-1(Z)-octene (VIc, $R = n \cdot C_6 H_{13}$, E = I) Yield, 79%, Z > 99%; b p. 120–124°C/9 mmHg; IR (neat) 1610, 1250, 840, 750 cm⁻¹; mass spectrum: m/e (rel. %) 310 (M^+ , 5), 185 (25), 73 (100), NMR (CCl₄) δ (ppm), 0 19 (9 H, s), 0.75–1.10 (3 H, m), 1.10–1 60 (8 H, m), 2.00–2 35 (2 H, m), 6.15 (1 H, t, J 6 Hz). Anal. Found. C, 42.78, H, 7.70 C₁₁H₂₃IS1 calcd.: C, 42.58; H, 7 47

1-Bromo-1-trimethylsilyl-1(Z)-octene, (VId, $R = n - C_6 H_{13}$, E = Br) A suspension of 1-trimethylsilyl-1(Z)-octenylcopper (II, 2 mmol scale) was prepared as described above, and THF (4 ml), HMPT (2 ml), and 0.36 g of NBS (2 mmol

In 5 ml of THF) were added at -45 to -50°C The mixture was stured overnight at a room-temperature and worked up in the usual way Chromatcgraphy of the concentrate on a silica-gel column (hexane) afforded 0 34 g (66%) of VId (Z > 99%) B p 78-83°C/6 n°mHg, IR (neat) 1611, 1247, 870, 837, 750, 691 cm⁻¹, mass spectrum *m/e* (rc1 %) 264 (*M*⁺, 6), 262 (*M*⁺, 6), 139 (80), 137 (78), 73 (100), NMR (CCl₄) δ (ppm), 0 20 (9 H, s), 0 75-1 10 (3 H, m), 1 10-1 60 (8 H, m), 2 10-2 40 (2 H, m), 6 20 (1 H, t, *J* 7 Hz) Anal Found C, 50 63, H, 8.69 C₁₁H₂₃BrS1 calcd C, 50 18, H, 8 80%

1-Chloro-1-trimethylsilyl-1(Z)-octene (VIe, $R = n-C_6H_{13}$, E = Cl) Similar treatment of 1-trimethylsilyl-1(Z)-octenylcopper (II, 1 mmol scale) with 0.14 g of N-chlorosuccinamide (NCS) (1 mmol in 5 ml of THF) as described above gave 0 15 g (66%) of VIe (Z > 99%) B.p. 124–128°C/32 mmHg, IR (neat) 1615, 1250, 835, 753, 695 cm⁻¹ mass spectrum m/e (rel %) 220 (M^+ , 1), 218 (M^+ , 3), 93 (100), 73 (84), NMR (CCl₄) δ (ppm), 0 19 (9 H, s), 0.75–1 10 (3 H, m), 1.10–1 60 (8 H, m), 2.10–2.45 (2 H, m), 5 97 (1 H, t, J 6 Hz) Anal Found⁻ C, 60 34; H, 10 58 C₁₁H₂₃ClSi calcd C, 60 37, H, 10 59%

 α -Stannylated vinylsilanes (VIf, g)

1-Tributylstannyl-1-trimethylsilyl-1(Z)-butene (VIf, $R = C_2H_5$, $E = (n-Bu)_3Sn$) A suspension of 1-trimethyl-1(Z)-butenylcopper (II, 1 mmol scale, prepared as described above) was treated with THF (2 ml), HMPT (1 ml), and n-Bu₃SnCl (0 40 ml, 1 5 mmol) at -45 to -50°C. The mixture was stirred overnight at room temperature, and worked up as usual Chromatography (silica-gel column, hexane) of the concentrate afforded 0 21 g (51%) of VIf (Z > 99%). Oil, IR (neat 1574, 1248, 904, 879, 831, 748 cm⁻¹, NMR (CCl₄) δ (ppm), C 00 (9 H, s), 0 40-1 6^{\leps} (30 H, m), 2 05 (2 H, q, J 6 Hz), 6 60 (1 H, t, J 6 Hz) Anal Found⁻ C, 54 45, H, 10 02 C₁₉H₄₂SiSn calcd C, 54 68, H, 10 14%.

1-Tributylstannyl-1-trimethylsilyl-1(Z)-pentene (VIg, $R = n-C_3H_7$, $E = (n-Bu)_3Sn$) Yield, 56%, Z > 99%, IR (neat) 1570, 1250, 920, 905, 837, 750 cm⁻¹; NMR (CCl₄) δ (ppm), 0 00 (9 H, s), 0 35–1 65 (32 H, m), 2 03 (2 H, q, J 6 Hz), 6 62 (1 H, t, J 6 Hz) Anal Found C, 55 66, H, 10 32, $C_{20}H_{44}$ SiSn calcd C, 55 69, H, 10 28%

Acknowledgement

The authors thank the Ministry of Education, Science and Culture of Japan, for a Grant-in-Aid (911506, 011010, 110309, 203014, 303023).

References

- 1 JF Normant in D Seyferth (Ed) New Application of Organometallic Reagents in Organic Syntheses Elsevier Amsterdam J Organometal Chem Library Vol 1 1976 p 219
- 2 H Westmijze J Meijer H J T Bos and P Vermeer Recl Trav Chim Pays-Bas 95 (1976) 299 and ref cited therein
- 3 (a) I Fleming, Chem Ind (London), (1975) 449 (b) P F Hudrlik in D Seyferth (Ed) New Application of Organometallic Reagents in Organic Syntheses Elsevier Amsterdam J Organometal Chem Library Vol 1,1976 p 127 (c) E W Colvin Chem Soc Rev 7 (1978) 15
- 4 (a) J J Eisch and G A Damasevitz, J Org Chem 41 (1976) 2214 (b) K Uchida K Utimoto and H Nozaki ibid 41 (1976) 2215 (c) 41 (1976) 2941 (d) Tetrahedron 33 (1977) 2987 (e) T H Chan W. Michajlowskij B S Ong and D N Harpp J Organometal Chem, 107 (1976) C1 (f) W Michajlowskij and T H Chan, Tetrahedron Lett, (1976) 4439

- 6 H. Westmijze, J. Meijer and P. Vermeer, Tetrahedron Lett. (1977) 1823
- 7 R A Benkeser ML Burrous LE Nelson and JV Shwisher J Amer Chem Soc 83 (1961) 4385
- 8 (a) JF Normant G Cahiez M Bourgain C Chuit ind J Villieras Bull Soc Chim Fr (1974) 1656 (b) A Marfit P R McGuirk R Kramer ind P Helquest J Amer Chem Soc 99 (1977) 253
- 9 (a) B.B. Snider, M. Kurris and R.S.E. Conn. J. Amer. Chem. Soc. 100 (1978) 4624. (b) J.J. Lisch. R.J. Manfre. and D.A. Komar. J. Organometal. Chem. 159 (1979) C13
- 10 (a) J.F. Normant, G. Cahiez and C. Chuit, J. Organometal. Chem. 77 (1974) 269 (b) H. Normant. Bull Soc. Chim. Fr. (1968) 791
- 11 K. Utimoto, M. Kitai and H. Nozaki, Tetrahedron Lett. (1975) 2825
- 12 (a) K Utimoto M Obivishi and H Nozaki J Org Chem 41 (1976) 2940 (b) Tetrihedron Lett (1977) 1807 (c) (1978) 1383
- 13 R B Miller and G McGarvey J Org Chem 43 (1978) 4424
- 14 H Westmijze J Kleijn and P Vermeer Tetrahedron Lett (1978) 3125
- 15 T H Chan and W Michilowskij Tetrahedron Lett (1974) 171
- 16 G Stork and J Singh J Amer Chem Soc 96 (1974) 6181 and ref cited therein
- 17 H Westmijze J Meijer and P Vermeer Recl Trav Chim Pavs-Bas 96 (1977) 168
- 18 H Westmijze J Meijer and P Vermeer Recl Trav Chim Pays-Bas 96 (1977) 194
- 19 (a) B.-T Grobel and D Seebach Chem Ber 110 (1977) 867 (b) G Zweifel and W Lewis J Org Chem 43 (1978) 2739 and ref cited therein
- 20 (a) M A Cook C Eaborn and D R M Walton J Organometal Chem 24 (1970) 301 (b) V Jager and H Gunter in E Muller (Ed) Methoden der Organischen Chemie Georg Thieme Verlig Stuttgart Vol V/2a (1977) p 391